Space Station Reference Coordinate Systems

International Space Station Program

Revision F
26 October 2001

agenzia spaziale italiana (Italian Space Agency)

european space agency
Canadian Space

Agence spatiale canadienne

Agency

National Aeronautics and Space Administration International Space Station Program Johnson Space Center Houston, Texas

Russian Space Agency

National Space Developmeqt Agency of Japan

REVISION AND HISTORY PAGE

PREFACE

The purpose of this document is to establish a set of coordinate systems to be used when reporting data between the Space Station Program Participants (SSPP).

This document contains figures defining configuration dependent, configuration independent, articulating, viewing, unpressurized, translating, pressurized, and transverse boom frame references frames. In addition, appendixes are included with abbreviations and acronyms, a glossary, subscript designations, and reference documents.

The contents of this document are intended to be consistent with the tasks and products to be prepared by Space Station Program (SSP) participants as defined in SSP 41000, System Specification for Space Station. The Space Station Reference Coordinate Systems shall be implemented on all new SSP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the Program Manager.

INTERNATIONAL SPACE STATION PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS

26 OCTOBER 2001

CONCURRENCE

PREPARED BY:	Felipe Sauceda	5-5332
	PRINT NAME	ORGN
CHECKED BY:	signature	DATE
	Gregory B. Ray	5-5332
	PRINT NAME	ORGN
SUPERVISED BY (BOEING):	SIGNATURE Bob Korin	$\begin{gathered} \hline \text { DATE } \\ 5-5310 \end{gathered}$
	PRINT NAME	ORGN
SUPERVISED BY (NASA):	signature	DATE
	Nancy Wilks	OM
	PRINT NAME	ORGN
DQA:	Signature	DATE
	Lucie Delheimer	2-6610
	PRINT NAME	ORGN
	SIGNATURE	DATE

NASA/ASI

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001
/s/ Dale Thomas 3/11/94
DATE
/s/ Andrea Lorenzoni
3/16/94
For ASI
DATE

NASA/CSA

INTERNATIONAL SPACE STATION ALPHA PROGRAM

SPACE STATION REFERENCE COORDINATE SYSTEMS

26 OCTOBER 2001

/s/ Dale Thomas 3/14/94
DATE

Agreed to in principal subject to completion of detailed review by CSA and its contractor.

NASA/ESA

INTERNATIONAL SPACE STATION ALPHA PROGRAM

SPACE STATION REFERENCE COORDINATE SYSTEMS

26 OCTOBER 2001

/s/ Dale Thomas 3/11/94
For NASA

DATE
/s/ Helmut Heusmann

For ESA

3/23/94
DATE

Pending definition of AR5XATV launched APM coordinate system origin, ref. ESA Letter MES/007/94/HH/em, dated 23 Feb, 1994.
Note: Document not called up as applicable to ESA.

NASA/NASDA

INTERNATIONAL SPACE STATION ALPHA PROGRAM SPACE STATION REFERENCE COORDINATE SYSTEMS 26 OCTOBER 2001

Dale Thomas
3/11/94
For NASA
DATE

Kuniaki Shiraki
3/17/94
DATE

Agreed to in principal subject to completion of detailed review by NASDA.

NASA/RSA

INTERNATIONAL SPACE STATION ALPHA PROGRAM

SPACE STATION REFERENCE COORDINATE SYSTEMS

 26 OCTOBER 2001/s/ Dale Thomas
3/11/94
For NASA
DATE

SPACE STATION PROGRAM OFFICE SPACE STATION REFERENCE COORDINATE SYSTEMS

LIST OF CHANGES

26 OCTOBER 2001

All changes to paragraphs, tables, and figures in this document are shown below:

SSCBD	ENTRY DATE	CHANGE	PARAGRAPH
3299	$10 / 26 / 01$	1.3	PRECEDENCE
		5.0	ARTICULATING AND TRANSVERSE
		BOOM REFERENCE FRAMES	
	8.0	TRANSLATING REFERENCE FRAMES	
	9.0	PRESSURIZED MODULE REFERENCE	
			FRAMES

TABLE(S)
NONE.
FIGURE(S)
ALL FIGURES WERE CHANGED FOR UPDATE TO CORRECT FORMAT.
ADDITIONAL CHANGES WERE MADE TO THE FOLLOWING:
3.0-15 RUSSIA ORBITAL COORDINATES SYSTEM

$3.0-16$	RSO: RUSSIAN SUN EQUILIBRIUM ATTITUDE COORDINATES SYSTEM
$4.0-2$	SPACE STATION REFERENCE
	COORDINATE SYSTEM
$4.0-4$	RSA ANALYSIS COORDINATE SYSTEM
$4.0-9$	SOYUZ TM TRANSPORT MANNED
	VEHICLE COORDINATE SYSTEM
$4.0-10$	PROGRESS-M TRANSPORT CARGO
$4.0-12$	VEHICLE COORDINATE SYSTEM
	AUTOMATED TRANSFER VEHICLE $4.0-13$
COORDINATE SYSTEM	
	H-II TRANSFER VEHICLE COORDINATE SYSTEM, MECHANICAL
	DESIGN REFERENCE

```
LIST OF CHANGES - Continued
3299 - contd. 10/26/01
\begin{tabular}{ll}
\(4.0-14\) & H-II TRANSFER VEHICLE \\
& COORDINATE SYSTEM, ATTITUDE \\
& REFERENCE \\
\(5.0-1\) & STARBOARD SOLAR POWER MODULE
\end{tabular}
5.0-2 INTEGRATED TRUSS SEGMENT S4
COORDINATE SYSTEM
5.0-3 INTEGRATED TRUSS SEGMENT S5
    COORDINATE SYSTEM
5.0-4 INTEGRATED TRUSS SEGMENT S6
    COORDINATE SYSTEM
5.0-5 PORT SOLAR POWER MODULE
5.0-6 INTEGRATED TRUSS SEGMENT P4
    COORDINATE SYSTEM
5.0-7 INTEGRATED TRUSS SEGMENT P5
    COORDINATE SYSTEM
5.0-8 INTEGRATED TRUSS SEGMENT P6
    COORDINATE SYSTEM
5.0-9 SOLAR ARRAY WING COORDINATE
    SYSTEM
5.0-10 THERMAL CONTROL SYSTEM
    RADIATOR COORDINATE SYSTEM
5.0-11 INTEGRATED TRUSS SEGMENT Z1
        COORDINATE SYSTEM
5.0-12 INTEGRATED TRUSS SEGMENT S0
        COORDINATE SYSTEM
5.0-13 INTEGRATED TRUSS SEGMENT S1
        COORDINATE SYSTEM
5.0-14 INTEGRATED TRUSS SEGMENT S3
        COORDINATE SYSTEM
5.0-15 INTEGRATED TRUSS SEGMENT P1
        COORDINATE SYSTEM
5.0-16 INTEGRATED TRUSS SEGMENT P3
        COORDINATE SYSTEM
5.0-17 FGB ARRAYS COORDINATE SYSTEM
```


LIST OF CHANGES - Continued

5.0-18	SERVICE MODULE ARRAYS COORDINATE SYSTEM
5.0-19	SCIENCE POWER PLATFORM COORDINATE SYSTEM
5.0-20	SCIENCE POWER PLATFORM RADIATOR COORDINATE SYSTEM
5.0-21	SCIENCE POWER PLATFORM ARRAYS COORDINATE SYSTEM
6.0-1	TRACKING AND DATA RELAY SATELLITE SYSTEM (KU-BAND) COORDINATE SYSTEM
6.0-6	EARLY AMMONIA SERVICER COORDINATE STSTEM
6.0-7	RACK COORDINATE SYSTEM
6.0-8	O2/N2 HIGH PRESSURE GAS TANK COORDINATE SYSTEM
6.0-9	SOLAR ARAY ORU COORDINATE SYSTEM
6.0-10	PUMP MODULE ASSEMBLY ORU COORDINATE SYSTEM
6.0-11	S1 GRAPPLE BAR ORU COORDINATE SYSTEM
$6.0-12$	RADIATOR ORU COORDINATE SYSTEM
6.0-13	THERMAL RADIATOR ROTARY JOINT ORU COORDINATE SYSTEM
6.0-14	MAST CANISTER ORU COORDINATE SYSTEM
7.0-1	SPACELAB PALLET COORDINATE SYSTEM
7.0-3	EXTERNAL STOWAGE PLATFORM - 2
$8.0-1$	CREW AND EQUIPMENT TRANSLATIONAL AID COORDINATE SYSTEM
8.0-3	MOBILE TRANSPORTER COORDINATE SYSTEM

LIST OF CHANGES - Continued

3299 - contd. 10/26/01

8.0-4	MOBILE SERVICING CENTRE BASE SYSTEM COORDINATE SYSTEM
8.0-6	DELETED
8.0-8	JEM - REMOTE MANIPULATOR SYSTEM COORDINATE SYSTEM
$9.0-1$	UNITED STATES LABORATORY MODULE COORDINATE SYSTEM
9.0-2	UNITED STATES HABITATION MODULE COORDINATE SYSTEM
9.0-3	MINI PRESSURIZED LOGISTICS MODULE COORDINATE SYSTEM
9.0-4	JOINT AIRLOCK COORDINATE SYSTEM
9.0-5	CUPOLA COORDINATE SYSTEM
9.0-6	RESOURCE NODE 1 COORDINATE SYSTEM
9.0-7	RESOURCE NODE 2 COORDINATE SYSTEM
9.0-8	RESOURCE NODE 3 COORDINATE SYSTEM
9.0-9	CENTRIFUGE ACCOMMODATION MODULE COORDINATE SYSTEM
$9.0-10$	JAPANESE EXPERIMENT MODULE (JEM) - PRESSURIZED MODULE (PM) COORDINATE SYSTEM
$9.0-11$	JAPANESE EXPERIMENT MODULE EXPERIMENTAL LOGISTICS MODULE PRESSURIZED SECTION COORDINATE SYSTEM
$9.0-12$	JAPANESE EXPERIMENT MODULE EXPERIMENTAL LOGISTICS MODULE EXPOSED SECTION COORDINATE SYSTEM
$9.0-13$	JAPANESE EXPERIMENT MODULE EXPOSED FACILITY COORDINATE SYSTEM
$9.0-15$	PRESSURIZED MATING ADAPTER-1 COORDINATE SYSTEM

LIST OF CHANGES - Continued

3299 - contd.	10/26/01	9.0-16	PRESSURIZED MATING ADAPTER-2 COORDINATE SYSTEM
		$9.0-17$	PRESSURIZED MATING ADAPTER-3 COORDINATE SYSTEM
		9.0-18	FGB CARGO BLOC COORDINATE SYSTEM
		9.0-19	SERVICE MODULE (SM) COORDINATE SYSTEM
		9.0-20	DOCKING COMPARTMENT - 1 COORDINATE SYSTEM
		$9.0-21$	DOCKING COMPARTMENT - 2 COORDINATE SYSTEM
		9.0-22	DELETED
		9.0-23	DELETED
		9.0-24	UNIVERSAL DOCKING MODULE COORDINATE SYSTEM
		9.0-27	RESEARCH MODULE - 1 COORDINATE SYSTEM
		9.0-28	RESEARCH MODULE -2 COORDINATE SYSTEM

APPENDIX

3299
10/26/01
APPENDIX C - SUBSCRIPT DESIGNATIONS

APPENDIX E - ISS RUSSIAN SEGMENT

TABLE OF CONTENTS

PARAGRAPH		PAGE
1.0	INTRODUCTION	1-1
1.1	PURPOSE	1-1
1.2	SCOPE	1-1
1.3	PRECEDENCE	1-1
1.4	DELEGATION OF AUTHORITY	1-1
2.0	APPLICABLE DOCUMENTS	2-1
3.0	CONFIGURATION INDEPENDENT REFERENCE FRAMES	3-1
4.0	CONFIGURATION DEPENDENT REFERENCE FRAMES	4-1
5.0	ARTICULATING AND TRANSVERSE BOOM REFERENCE FRAMES	5-1
6.0	VIEWING REFERENCE FRAMES	6-1
7.0	UNPRESSURIZED LOGISTICS REFERENCE FRAMES	7-1
8.0	TRANSLATING REFERENCE FRAMES	8-1
9.0	PRESSURIZED MODULE REFERENCE FRAMES	9-1
APPENDIXES		
APPENDIX		PAGE
A	ABBREVIATIONS AND ACRONYMS	A-1
B	GLOSSARY	B-1
C	SUBSCRIPT DESIGNATIONS	$\mathrm{C}-1$
D	REFERENCE AND SOURCE DOCUMENTS	D-1
E	ISS RUSSIAN SEGMENT	E-1
FIGURES		
FIGURE		PAGE
3.0-1	J200, MEAN OF 2000, CARTESIAN	3-2
3.0-2	MEAN OF 2000, POLAR	3-3
3.0-3	MEAN OF 1950, CARTESIAN	3-4
3.0-4	MEAN OF 1950, POLAR	3-5
3.0-5	TRUE OF DATE, CARTESIAN	3-6
3.0-6	TRUE OF DATE, POLAR	3-7
3.0-7	GREENWICH TRUE OF DATE, CARTESIAN	3-8
3.0-8	GREENWICH TRUE OF DATE, POLAR	3-9
3.0-9	GEODETIC	3-10
3.0-10	ORBITAL ELEMENTS	3-11
3.0-11	LOCAL ORBITAL: LOCAL VERTICAL LOCAL	
	HORIZONTAL .	3-12

TABLE OF CONTENTS - Continued

3.0-12	CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM	3-13
3.0-13	GROUND SITE AZIMUTH-ELEVATION MOUNT	3-14
3.0-14	XPOP QUASI-INERTIAL REFERENCE FRAME	3-15
3.0-15	RUSSIA ORBITAL COORDINATES SYSTEM	3-16
3.0-16	RSO: RUSSIAN SUN EQUILIBRIUM ATTITUDE COORDINATES SYSTEM	3-17
4.0-1	SPACE STATION ANALYSIS COORDINATE SYSTEM	4-2
4.0-2	SPACE STATION REFERENCE COORDINATE SYSTEM	4-3
4.0-3	SPACE STATION BODY COORDINATE SYSTEM	4-4
4.0-4	RSA ANALYSIS COORDINATE SYSTEM	4-5
4.0-5	SPACE STATION GPS ANTENNA COORDINATE SYSTEM	4-6
4.0-6	SPACE SHUTTLE ORBITER STRUCTURAL COORDINATE SYSTEM	4-7
4.0-7	ORBITER BODY AXES	4-8
4.0-8	ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS	4-9
4.0-8	ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS CONTINUED	4-10
4.0-9	SOYUZ TM TRANSPORT MANNED VEHICLE COORDINATE SYSTEM	4-11
4.0-10	PROGRESS-M TRANSPORT CARGO VEHICLE COORDINATE SYSTEM	4-12
4.0-11	CREW RETURN VEHICLE COORDINATE SYSTEM	4-13
4.0-12	AUTOMATED TRANSFER VEHICLE COORDINATE	
	SYSTEM	4-14

4.0-13 H-II TRANSFER VEHICLE COORDINATE SYSTEM, MECHANICAL DESIGN REFERENCE $4-15$
4.0-14 H-II TRANSFER VEHICLE COORDINATE SYSTEM, ATTITUDE REFERENCE $4-16$
5.0-1 STARBOARD SOLAR POWER MODULE COORDINATE SYSTEM 5-2
5.0-2 INTEGRATED TRUSS SEGMENT S4 COORDINATE SYSTEM $5-3$
5.0-3 INTEGRATED TRUSS SEGMENT S5 COORDINATE SYSTEM 5-4
5.0-4 INTEGRATED TRUSS SEGMENT S6 COORDINATE SYSTEM 5-5
5.0-5 PORT SOLAR POWER MODULE COORDINATE SYSTEM 5-6
5.0-6 INTEGRATED TRUSS SEGMENT P4 COORDINATE SYSTEM $5-7$
5.0-7 INTEGRATED TRUSS SEGMENT P5 COORDINATE SYSTEM $5-8$

TABLE OF CONTENTS - Continued

5.0-8	INTEGRATED TRUSS SEGMENT P6 COORDINATE
	SYSTEM . $5-9$

5.0-9 SOLAR ARRAY WING COORDINATE SYSTEM 5 - 10
$\begin{array}{ll}\text { 5.0-10 THERMAL CONTROL SYSTEM RADIATOR COORDINATE } \\ & \text { SYSTEM . } 5 \text { - } 11\end{array}$
$\begin{array}{ll}\text { 5.0-11 } & \text { INTEGRATED TRUSS SEGMENT Z1 COORDINATE } \\ & \text { SYSTEM . } 5 \text { 5 } 12\end{array}$
$\begin{array}{ll}\text { 5.0-12 } & \text { INTEGRATED TRUSS SEGMENT S0 COORDINATE } \\ & \text { SYSTEM . } 5 \text { - } 13\end{array}$
$\begin{array}{ll}\text { 5.0-13 INTEGRATED TRUSS SEGMENT S1 COORDINATE } \\ & \text { SYSTEM . } 5 \text { - } 14\end{array}$
$\begin{array}{ll}\text { 5.0-14 INTEGRATED TRUSS SEGMENT S3 COORDINATE } \\ & \text { SYSTEM . } 5 \text { - } 15\end{array}$
$\begin{array}{ll}\text { 5.0-15 } & \text { INTEGRATED TRUSS SEGMENT P1 COORDINATE } \\ & \text { SYSTEM . } 5 \text { - } 16\end{array}$
5.0-16 INTEGRATED TRUSS SEGMENT P3 COORDINATE - .
5.0-17 FGB ARRAYS COORDINATE SYSTEM 5 - 18
5.0-18 SERVICE MODULE ARRAYS COORDINATE SYSTEM 5 - 19
5.0-19 SCIENCE POWER PLATFORM COORDINATE SYSTEM 5-20
5.0-20 SCIENCE POWER PLATFORM RADIATOR COORDINATE \quad. 21
5.0-21 SCIENCE POWER PLATFORM ARRAYS COORDINATE \quad. .
$\begin{array}{ll}\text { 6.0-1 } & \text { TRACKING AND DATA RELAY SATELLITE SYSTEM } \\ \text { (KU-BAND) COORDINATE SYSTEM } 6-2\end{array}$
6.0-2 ATTACHED PAYLOAD RAM COORDINATE SYSTEM 6-3
6.0-3 ATTACHED PAYLOAD WAKE COORDINATE SYSTEM 6-4
6.0-4 ATTACHED PAYLOAD ZENITH COORDINATE SYSTEM 6 - 5
6.0-5 ATTACHED PAYLOAD NADIR COORDINATE SYSTEM 6-6
6.0-6 EARLY AMMONIA SERVICER COORDINATE STSTEM 6-7
6.0-7 RACK COORDINATE SYSTEM . 6-8
$\begin{array}{ll}\text { 6.0-8 } & \text { O2/N2 HIGH PRESSURE GAS TANK COORDINATE } \\ & \text { SYSTEM . } 6-9\end{array}$
6.0-9 SOLAR ARRAY ORU COORDINATE SYSTEM 6 - 10
6.0-10 PUMP MODULE ASSEMBLY ORU COORDINATE SYSTEM 6-11
6.0-11 S1 GRAPPLE BAR ORU COORDINATE SYSTEM 6-12
6.0-12 RADIATOR ORU COORDINATE SYSTEM . 6-13
6.0-13 THERMAL RADIATOR ROTARY JOINT ORU COORDINATE SYSTEM

TABLE OF CONTENTS - Continued

6.0-14 MAST CANISTER ORU COORDINATE SYSTEM 6-15
7.0-1 SPACELAB PALLET COORDINATE SYSTEM 7-2
7.0-2 EDO COORDINATE SYSTEM 7-3
7.0-3 EXTERNAL STOWAGE PLATFORM - 2 7-4
8.0-1 CREW AND EQUIPMENT TRANSLATIONAL AID COORDINATE SYSTEM 8-2
8.0-2 MOBILE SERVICING CENTRE COORDINATE SYSTEM 8-3
8.0-3 MOBILE TRANSPORTER COORDINATE SYSTEM 8-4
8.0-4 MOBILE SERVICING CENTRE BASE SYSTEM COORDINATE SYSTEM 8-5
8.0-5 OTCM OPERATING COORDINATE SYSTEM 8-6
8.0-6 DELETED 8-7
8.0-7 END EFFECTOR (EE) OPERATING COORDINATE SYSTEM 8-8
8.0-8 JEM - REMOTE MANIPULATOR SYSTEM COORDINATE SYSTEM $8-9$
9.0-1 UNITED STATES LABORATORY MODULE COORDINATE SYSTEM $9-2$
9.0-2 UNITED STATES HABITATION MODULE COORDINATE SYSTEM 9-3
9.0-3 MINI PRESSURIZED LOGISTICS MODULE COORDINATE SYSTEM 9-4
9.0-4 JOINT AIRLOCK COORDINATE SYSTEM 9-5
9.0-5 CUPOLA COORDINATE SYSTEM 9-6
9.0-6 RESOURCE NODE 1 COORDINATE SYSTEM 9-7
9.0-7 RESOURCE NODE 2 COORDINATE SYSTEM 9-8
9.0-8 RESOURCE NODE 3 COORDINATE SYSTEM 9-9
9.0-9 CENTRIFUGE ACCOMMODATION MODULE COORDINATE SYSTEM $9-10$
9.0-10 JAPANESE EXPERIMENT MODULE (JEM) - PRESSURIZED MODULE (PM) COORDINATE SYSTEM $9-11$
9.0-11 JAPANESE EXPERIMENT MODULE EXPERIMENTAL LOGISTICS MODULE PRESSURIZED SECTION COORDINATE SYSTEM $9-12$
9.0-12 JAPANESE EXPERIMENT MODULE - EXPERIMENTAL LOGISTICS MODULE EXPOSED SECTION COORDINATE SYSTEM $9-13$
9.0-13 JAPANESE EXPERIMENT MODULE EXPOSED FACILITY COORDINATE SYSTEM $9-14$
9.0-14 ESA ATTACHED PRESSURIZED MODULE COORDINATE SYSTEM $9-15$

TABLE OF CONTENTS - Continued

9.0-15	PRESSURIZED MATING ADAPTER-1 COORDINATE	$9-16$
	SYSTEM	
9.0-16	PRESSURIZED MATING ADAPTER-2 COORDINATE	9-17
	SYSTEM	
9.0-17	PRESSURIZED MATING ADAPTER-3 COORDINATE	
	SYSTEM	9-18
9.0-18	FGB CARGO BLOC COORDINATE SYSTEM	9-19
9.0-19	SERVICE MODULE (SM) COORDINATE SYSTEM	9-20
9.0-20	DOCKING COMPARTMENT - 1 COORDINATE SYSTEM	9-21
9.0-21	DOCKING COMPARTMENT - 2 COORDINATE SYSTEM	9-22
9.0-22	DELETED	9-23
9.0-23	DELETED	9-24
9.0-24	UNIVERSAL DOCKING MODULE COORDINATE SYSTEM	9-25
9.0-25	DELETED	9-26
9.0-26	DELETED	9-27
9.0-27	RESEARCH MODULE - 1 COORDINATE SYSTEM	9-28
9.0-28	RESEARCH MODULE -2 COORDINATE SYSTEM	9-29

1.0 INTRODUCTION

This document contains the definitions of the various coordinate systems used throughout the Space Station Program.

1.1 PURPOSE

The purpose of this document is to establish a set of coordinate systems to be used when reporting data between the Space Station Program Participants (SSPP).

1.2 SCOPE

The scope of this document does not extend beyond the realm of communication of data between the SSPPs. Analyses software, preferred conventions, on-orbit operations, on-orbit location coding and internal reports can contain data in whatever coordinate system deemed appropriate.

1.3 PRECEDENCE

In the event of a conflict between this document and any previous versions of SSP 30219, Space Station Reference Coordinate Systems, this document takes precedence. In the case of a conflict between this document and SSP 41000, System Specification for the Space Station; SSP 41000 takes precedence. In the event of a conflict between this document and any released Space Station engineering drawing or ICD, the released engineering drawing or ICD takes precedence.

1.4 DELEGATION OF AUTHORITY

The responsibility of assuring the definition, control, and implementation of the coordinate systems defined in this document is vested with the NASA Space Station Program Office, ASI, CSA, ESA, NASDA, and RSA.

2.0 APPLICABLE DOCUMENTS

The following documents of the date and issue shown are applicable to the extent specified herein. Inclusion of applicable documents herein does not in any way supersede the order of precedence specified in paragraph 1.3. The references show where each applicable document is cited in this document.

None

3.0 CONFIGURATION INDEPENDENT REFERENCE FRAMES

The coordinate systems outlined in this chapter are independent of the Space Station configuration. These coordinates systems are mostly global (with the origin at the center of the earth) in nature and can be used for any spacecraft orbiting the earth.

NAME:
ORIGIN:
ORIENTATION:

J2000, Mean of 2000, Cartesian Coordinate System*
The center of the Earth.
The epoch is 2000 January 1, noon or Julian ephemeris date 2451545.0.
The $X_{J 2000}-Y_{J 2000}$ plane is the mean Earth's equator of epoch.
The $X_{J 2000}$ axis is directed toward the mean vernal equinox of epoch.
The $Z_{\text {J2000 }}$ axis is directed along the Earth's mean rotational axis of epoch and is positive north.
The $Y_{J 2000}$ axis completes a right-handed system.
CHARACTERISTICS: Inertial right-handed Cartesian system.
*A source document which discusses the expression of vectors in mean of 2000, rather than mean of 1950, coordinates is U.S. Naval Observatory Circular No. 163, "The International Astronomical Union Resolutions on Astronomical Constants, Time Scales, and the Fundamental Reference Frame," Washington, D.C. 20390, December 10, 1981.

FIGURE 3.0-1 J200, MEAN OF 2000, CARTESIAN

For position - same as in J2000 mean of 2000, Cartesian.
For velocity -
Reference plane is perpendicular to radius vector $R_{\mathrm{J} 2000}$ from center of Earth to point P of interest
Reference direction is northerly along the meridian containing P
Polar position coordinates of P are:
$\alpha_{J 2000}$, right ascension, is the angle between projection of radius vector in the equatorial plane and the vernal equinox of epoch, positive toward east
$\delta_{\mathrm{J} 2000}$, declination, is the angle between the radius vector and the mean Earth's equator of epoch, positive toward north
$R_{\mathrm{J} 2000}$, magnitude of $R_{\mathrm{M} 2000}$.
Polar velocity coordinates of P are:
Let U, E, N denote up, east, and north directions; then:
$\Psi_{J 2000}$, azimuth, is the angle from north to the projection of the inertial velocity, V_{2000}, on the reference plane, positive toward east
$\gamma_{J 2000}$, flightpath angle, is the angle between the reference plane and
$V_{\text {M2000, }}$, positive sense toward U
$V_{J 2000}$, magnitude of $V_{\text {J2000 }}$
CHARACTERISTICS: Inertial.
FIGURE 3.0-2 MEAN OF 2000, POLAR

NAME: Mean of 1950, Cartesian Coordinate System
ORIGIN: The center of the Earth.
ORIENTATION: The epoch is the beginning of Besselian year 1950 or Julian ephemeris date 2433282.423357.

The $X_{\text {M1950 }}-Y_{\text {M1950 }}$ plane is the mean Earth's equator of epoch.
The $X_{M 1950}$ axis is directed toward the mean vernal equinox of epoch.
The $Z_{\text {M1950 }}$ axis is directed along the Earth's mean rotational axis of epoch and is positive north.
The $Y_{\text {M1950 }}$ axis completes a right-handed system.
CHARACTERISTICS: Inertial right-handed Cartesian system.
NOTES:
This coordinate system is provided to support existing analyses framework.
Any new analyses tasks should utilize the J2000, Cartesian Coordinate
System depicted in Figure 3.0-1.
This coordinate system is also referred to as B1950.
FIGURE 3.0-3 MEAN OF 1950, CARTESIAN

For position - same as in mean of 1950, Cartesian.
For velocity -
Reference plane is perpendicular to radius vector $R_{\text {M1950 }}$ from center of Earth to point P of interest
Reference direction is northerly along the meridian containing P
Polar position coordinates of P are:
$\alpha_{M 1950}$, right ascension, is the angle between projection of radius vector in the equatorial plane and the vernal equinox of epoch, positive toward east
$\delta_{M 1950}$, declination, is the angle between the radius vector and the mean Earth's equator of epoch, positive toward north
$R_{M 1950}$, magnitude of $R_{M 1950}$
Polar velocity coordinates of P are:
Let U, E, N denote up, east, and north directions; then:
$\Psi_{M 1950}$, azimuth, is the angle from north to the projection of $V_{M 1950}$ on the reference plane, positive toward east
$\gamma_{M 1950}$, flightpath angle, is the angle between the reference plane and $V_{\text {M1950; }}$; positive sense toward U
$V_{\text {M1950 }}$, magnitude of $V_{\text {M1950 }}$
CHARACTERISTICS: Inertial.
NOTE:
This coordinate system is provided to support existing analyses framework. Any new analyses tasks should utilize the J2000, Polar Coordinate System depicted in Figure 3.0-2.

FIGURE 3.0-4 MEAN OF 1950, POLAR

FIGURE 3.0-5 TRUE OF DATE, CARTESIAN

FIGURE 3.0-6 TRUE OF DATE, POLAR

NAME: Greenwich True of Date Coordinate System
ORIGIN: The center of the Earth.
ORIENTATION: The $X_{G W}-Y_{G W}$ plane is the Earth's TOD equator.
The $Z_{G W}$ axis is directed along the Earth's TOD rotational axis and is positive north.
The $+X_{G W}$ axis is directed toward the prime meridian.
The $Y_{G W}$ axis completes a right-handed system.
CHARACTERISTICS: Rotating right-handed Cartesian. Velocity vectors expressed in this system are relative to a rotating reference frame fixed to the Earth.

FIGURE 3.0-7 GREENWICH TRUE OF DATE, CARTESIAN

NAME: Greenwich True of Date, Polar Coordinate System
ORIGIN: For position - the center of the Earth.
For velocity - the point of interest.
ORIENTATION: For position - Same as the Greenwich true-of-date, Cartesian.
For velocity - Same as the TOD, Polar .
Polar position coordinates are:
R, radius, distance from center of the Earth
$R=\sqrt{X_{G W}{ }^{2}+Y_{G W}{ }^{2}+Z_{G W}{ }^{2}}$
λ, longitude, angular distance (positive east, negative west, limits ± 180 degrees) between the prime meridian (Greenwich) and the current or instantaneous meridian:
$\lambda=\tan ^{-1}\left(\frac{Y_{G W}}{X_{G W}}\right)$
δ, "latitude" or strictly geocentric declination, angular distance (positive north, negative south, limits ± 90 degrees) between the radius vector and its projection onto the equatorial plane.

$$
\delta=\sin ^{-1}\left(\frac{Z_{G W}}{R}\right)
$$

Polar velocity coordinates are the same as the TOD polar velocity coordinates (fig. 3.0-6)
CHARACTERISTICS: Quasi-inertial.
NOTE: The Greenwich True Of Date (GTOD) Coordinate System is related to the TOD Coordinate System by the Greenwich Sidereal Time (GST), the angle between the TOD vernal equinox and the Greenwich meridian. The GST is zero at the instant when the Greenwich meridian passes through the vernal equinox, and it increases at the rate $\omega=15.041068 \ldots \mathrm{deg} / \mathrm{hr}$. The longitude, λ, measured in the GTOD system and the right ascension, α, measured in the TOD system are related by $\lambda=\alpha-$ GST.

FIGURE 3.0-8 GREENWICH TRUE OF DATE, POLAR

NAME:

Geodetic Coordinate System

This system consists of a set of parameters rather than a coordinate system; therefore, no origin is specified.
ORIENTATION: This system of parameters is based on an ellipsoidal model of the Earth. For any point of interest, a line, known as the Geodetic Local Vertical, is defined as perpendicular to the ellipsoid from the point of interest.
h, geodetic altitude, is the distance from the point of interest to the reference ellipsoid, measured along the geodetic local vertical, and is positive for points outside the ellipsoid.
λ is the longitude measured in the plane of the Earth's true equator from the prime (Greenwich) meridian to the local meridian, measured positive eastward.
ϕ_{d} is the geodetic latitude, measured in the plane of the local meridian from the Earth's true equator to the geodetic local vertical, measured positive north from the equator.
CHARACTERISTICS: Rotating polar coordinate parameters. Usually only position vectors are expressed in this coordinate system. The reference ellipsoid model should be used with this system.

FIGURE 3.0-9 GEODETIC

NAME: Orbital Element System
ORIGIN: The center of the Earth.
ORIENTATION AND DEFINITIONS:
The reference for computing osculating orbital elements is the J2000 Coordinate System.
a is the instantaneous semimajor axis of the orbit.
e is the instantaneous eccentricity of the orbit.
i, the inclination of the orbital plane, is the instantaneous angle between the mean inertial north polar axis and the orbital angular momentum vector.
Ω, the right ascension of the ascending node, is the angle measured eastward from the vernal equinox along the equator to that intersection with the orbit plane where the vehicle passes from south to north. In the case where inclination equals zero, the ascending node is defined to be the X -axis of the inertial reference system.
ω, the argument of perigee, is the angle measured in the orbit plane between the ascending node and perigee, positive in the direction of travel in the orbit. In the case where eccentricity equals zero, perigee is defined to be at the ascending node.
ϕ, the true anomaly, is the geocentric angular displacement of the vehicle measured from perigee in the orbit plane, and positive in the direction of travel in the orbit.
CHARACTERISTICS: Quasi-inertial.

FIGURE 3.0-10 ORBITAL ELEMENTS

NAME: Local Orbital (LVLH) Coordinate System
ORIGIN:
Vehicle center of mass.
ORIENTATION:
The $X_{L O}-Z_{L O}$ plane is the instantaneous orbit plane at the time of interest.
The $Z_{L O}$ axis lies along the geocentric radius vector to the vehicle and is positive toward the center of the Earth.
The $Y_{L O}$ axis is normal to the orbit plane, opposite of the orbit momentum vector.
The $X_{L O}$ axis completes the right-handed orthogonal system and positive in the direction of the vehicle motion.
CHARACTERISTICS: Rotating right-handed Cartesian Coordinate System.

FIGURE 3.0-11 LOCAL ORBITAL: LOCAL VERTICAL LOCAL HORIZONTAL

NAME:	Conventional Terrestrial Reference System Coordinate System
TYPE:	Rotating Right-Handed Cartesian
DESCRIPTION:	The Conventional Terrestrial Reference System (CTRS) is an updated Earth-fixed system that incorporates polar motion. The CTRS assumes a spherical Earth and does not take any flattening factors into account, therefore, any definitions of altitude should be derived from the Geodetic Coordinate System (Figure 3.0-9). The CTRS is related to the GTOD (Figure 3.0-8) by the transformation: $\left(\begin{array}{l} x \\ y \\ z \end{array}\right)_{\text {CTRS }}=\left[\begin{array}{ccc} 1 & 0 & x p \\ 0 & 1 & y p \\ -x p & y p & 1 \end{array}\right]\left(\begin{array}{l} x \\ y \\ z \end{array}\right)_{G T O D}$ where xp and yp are the angular coordinates (very small angles measured in tenths of an arc-second) of the Celestial Ephemeris Pole (CEP) with respect to the Conventional International Origin (CIO)expressed in CTRS. This data is published weekly by the U.S. Naval Observatory in the International Earth Rotation Service Bulletin-A. The Global Positioning Satellite (GPS) ephemerides are maintained in the CTRS.
ORIGIN:	The origin is located at the Earth's Center.
ORIENTATION:	The pole of this system is known as the CIO.
	$\mathrm{Z}_{\text {CTRS }}$ The Z -axis is coincident with the Earth's principal rotational axis. The positive Z -axis is directed toward the CIO .
	$\mathrm{X}_{\text {CTRS }}$ The positive X -axis passes through the intersection of the CTRS reference equatorial plane and the CTRS reference meridian.
	$\mathrm{Y}_{\text {CTRS }}$ The positive Y -axis completes the rotating right-handed Cartesian system. CTRS

FIGURE 3.0-12 CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM

NAME:
ORIGIN:
Ground Site Azimuth-Elevation Mount Coordinate System The intersection of the site axes.

ORIENTATION AND DEFINITIONS:
The site tangent plane contains the site and is perpendicular to the reference ellipsoid normal which passes through the site.
R is the slant range to the vehicle.
A is the azimuth angle measured clockwise from true north to the projection of the slant-range vector into the site tangent plane.
E is the elevation angle measured positive above the site tangent plane to the slant-range vector.
CHARACTERISTICS: Rotating, Earth-referenced.

FIGURE 3.0-13 GROUND SITE AZIMUTH-ELEVATION MOUNT

NAME: XPOP Quasi-Inertial Coordinate System
ORIGIN: Vehicle Center of Mass
ORIENTATION AND DEFINITIONS:
The $X_{X P O P}-Z_{\text {XPOP }}$ plane is aligned with the orbit angular momentum vector and sun vector.
The $\mathrm{X}_{\mathrm{XPOP}}$ axis is aligned with the orbit angular momentum vector.
The $Z_{\text {XPOP }}$ axis is aligned with the orbital noon vector, positive in the negative orbital noon direction.
The $Y_{\text {XPOP }}$ axis lies in the vehicle orbit plane and completes the right-handed coordinate system.

CHARACTERISTICS: Quasi-inertial right-handed Cartesian Coordinate System.

FIGURE 3.0-14 XPOP QUASI-INERTIAL REFERENCE FRAME

NAME: Russia Orbital System of Coordinates
DESCRIPTION: This coordinate frame is the Russian equivalent to LVLH. The Russian name is Сббиталғ ная Cисте ма Коой инат, or [ССК].
ORIGIN:
Vehicle center of mass.
ORIENTATION: The $X_{O S C}-Y_{O S C}$ plane is the instantaneous orbit plane at the time of interest.

The $Y_{O S C}$ axis lies along the geocentric radius vector to the vehicle and is positive away from the center of the Earth.
The $Z_{\text {OSC }}$ axis is normal to the orbit plane, positive in the direction of the negative angular momentum vector.
The $X_{\text {OSC }}$ axis completes the set. It lies in the vehicle orbital plane, perpendicular to the $Y_{\text {OSC }}$ and $Z_{\text {OSC }}$ axes, and positive in the direction of vehicle motion.
CHARACTERISTICS: Rotating right-handed Cartesian Coordinate System.
SUBSCRIPT: OSC or [CCK]

FIGURE 3.0-15 RUSSIA ORBITAL COORDINATES SYSTEM
The $X_{\text {RSO }}-Y_{\text {RSO }}$ plane is aligned with the orbit angular momentum vector and sun vector.
The $X_{\text {RSO }}$ axis is aligned with the orbit angular momentum vector, positive along the negative angular momentum vector.
The $\mathrm{Y}_{\mathrm{RSO}}$ axis is aligned with the orbital noon vector, i.e., the projection of the sun vector onto the orbital plane.
The $Z_{\text {RSO }}$ axis lies in the vehicle orbit plane and completes the right-handed coordinate system.
$\begin{aligned} & \vec{N}=\text { Unit Orbital Noon } \\ & \vec{n}=\text { Unit Angular Momentum Vector } \\ & \vec{S} \\ & \vec{P}=\text { Unit Sun Vector (at orbital noon) } \\ &= \text { Unit Perpendicular Vector to } S \text { \& } h \text { Plane, } \\ &(S X h)\end{aligned}$

$$
\begin{aligned}
& X_{\text {Rso }}=-\vec{h} \\
& \mathrm{Y}_{\text {RSo }}=\overrightarrow{\mathrm{h}} \times(\overrightarrow{\mathrm{S}} \times \overrightarrow{\mathrm{h}}) \\
& \mathrm{Z}_{\text {Rso }}=\overrightarrow{\mathrm{S}} \times \overrightarrow{\mathrm{h}}
\end{aligned}
$$

$$
\vec{N}=\vec{h} \times(\vec{S} \times \vec{h})
$$

CHARACTERISTICS: Quasi-inertial right-handed Cartesian Coordinate System. SUBSCRIPT: RSO or [PCO]

FIGURE 3.0-16 RSO: RUSSIAN SUN EQUILIBRIUM ATTITUDE COORDINATES SYSTEM

4.0 CONFIGURATION DEPENDENT REFERENCE FRAMES

The coordinate systems outlined in this chapter are dependent on the Space Station configuration as well as the Orbiter and visiting vehicle configurations. These coordinate systems differ in origin location, and orientation and the user is free to use whichever system suits the analysis being performed. All dimensions are in inches unless otherwise specified.

FIGURE 4.0-1 SPACE STATION ANALYSIS COORDINATE SYSTEM

FIGURE 4.0-2 SPACE STATION REFERENCE COORDINATE SYSTEM

FIGURE 4.0-3 SPACE STATION BODY COORDINATE SYSTEM

FIGURE 4.0-4 RSA ANALYSIS COORDINATE SYSTEM

ORIENTATION: $\quad X_{G P S} \quad$ Completes the set $X_{G P S}, Y_{G P S}, Z_{G P S}$

NAME:
TYPE:
DESCRIPTION:

ORIGIN:

SUBSCRIPT:

GPS Antenna Coordinate System
Right-Handed Cartesian, Body-Fixed, Hardware Specific.
The GPS Antenna Coordinate System is the reference frame for attitude measurements output by the onboard GPS Receiver/Processor, and is the frame in which attitude knowledge requirements are expressed.

The origin is located at the center of the upper left bolthole for GPS antenna \#1, in the plane of the outer surface of the mounting plate.
$Y_{\text {GPS }}$ Along the line from the upper left bolthole for GPS antenna \#2 to the upper left bolthole of GPS antenna \#1
$\mathrm{Z}_{\mathrm{GPS}} \quad$ Perpendicular to the plane formed by the upper left boltholes for GPS antennas \#1, \#2, and \#4, and positive in the general direction of the SO Z axis
GPS

FIGURE 4.0-5 SPACE STATION GPS ANTENNA COORDINATE SYSTEM

NAME:
Space Shuttle Orbiter Structural Coordinate System
TYPE:
Right-Handed Cartesian, Body-Fixed
DESCRIPTION: This coordinate system is consistent with NSTS 07700, Volume IV, Attachment 1, ICD-2-19001, Shuttle Orbiter/Cargo Standard Interfaces. All dimensions in inches.

ORIGIN:
The origin is located in the orbiter plane of symmetry at a point 400 inches below the centerline of the payload bay and 236 inches forward of the orbiter nose.

ORIENTATION:
$\mathrm{X}_{\mathrm{O}} \quad$ The X -axis is parallel to the longitudinal axis of the payload bay, 400 inches below the centerline of the payload bay. The positive X-axis is toward the tail.
$Z_{O} \quad$ The Z -axis is located in the orbiter plane of symmetry, perpendicular to the X -axis. The positive Z -axis is in upward direction in the landing attitude.
$\mathrm{Y}_{\mathrm{O}} \quad$ The positive Y -axis is in the direction of port and completes the rotating right-handed Cartesian system.
SUBSCRIPT:
0
FIGURE 4.0-6 SPACE SHUTTLE ORBITER STRUCTURAL COORDINATE SYSTEM

NAME: Orbiter Body Axis Coordinate System
ORIGIN: Orbiter center of mass
ORIENTATION: $\quad X_{B Y} \quad$ The X-axis is parallel to a line in the Orbiter plane of symmetry, parallel to and 1016 centimeters (400 inches) below the payload bay centerline with positive sense toward the nose.
$Z_{B Y} \quad$ The Z-axis is parallel to the Orbiter plane of symmetry and is perpendicular to $X_{B Y}$, positive down with respect to the Orbiter fuselage.
$Y_{B Y} \quad$ The Y-axis completes the right-handed orthogonal system.
CHARACTERISTICS: Right-handed Cartesian system.
The Euler sequence that is associated with this system is a yaw, pitch, roll, sequence, where $\psi=$ yaw, $\theta=$ pitch, and $\phi=$ roll or blank. This attitude sequence is yaw, pitch, and roll around the $Z_{B Y}, Y_{B Y}$, and $X_{B Y}$ axes, respectively.
$\mathrm{L}, \mathrm{M}, \mathrm{N}$: Moments about $X_{B Y}, Y_{B Y}$, and $Z_{B Y}$ axes, respectively.
p, q, r: Body rates about $X_{B Y}, Y_{B Y}$, and $Z_{B Y}$ axes, respectively.
p, q, r: Angular body acceleration about $X_{B Y}, Y_{B Y}$, and $Z_{B Y}$ axes, respectively.

FIGURE 4.0-7 ORBITER BODY AXES

NAME:
DESCRIPTION:

Alpha, Beta, and Gamma Angle definitions

The generic analysis angles α and γ are defined as positive right handed rotations about the y and x axes respectively. The analysis angle β is defined as a positive right handed rotation with its axis of rotation being perpendicular to that of α and rotated by α. The β axis is aligned with the x axis when $\alpha=0^{\circ}$. In the figure above, $\alpha=0^{\circ}, \beta=0^{\circ}$ (active side of the arrays facing in $-z$ direction), and $\gamma=+90^{\circ}$, because the radiators have been rotated 90° about the x axis.

In addition to the generic analysis angles, each joint has its own local reference angle used to command its joint motor. These 12 specific joint angles, labeled in the figure above, are right handed rotations about their individual rotation axes. The joint angles are always identified by their unique subscripts to differentiate them from the generic analysis angles.
ORIENTATION:
The α joint angles, $\alpha_{\text {stbd }}$ and $\alpha_{\text {port, }}$ are positive right handed rotations about the rotation axes pointed outboard from each joint. The 0° position is as shown in the figure, when the normal to the arrays as oriented point in the $-z$ axis direction. The individual joint angle rotation capabilities are 0° to 360° (continuous rotation).

For each β joint angle, a positive β rotation is right handed looking outward along the array from the motor. The 0° position is defined as when the normal to the array face is pointed inboard, parallel to the y axis. Thus, the joint specific target angles represented in the figure are:
FIGURE 4.0-8 ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS
$\left[\beta_{\text {S4UPR3A }}, \beta_{\text {S4LWR1A }}, \beta_{\text {S6UPR1B }}, \beta_{\text {S6LWR3B }}\right]=\left[-90^{\circ}, 90^{\circ},-90^{\circ}\right.$, $\left.90^{\circ}\right]$,
$\left[\beta_{\text {P4UPR4A }}, \beta_{\text {P4LWR2A }}, \beta_{\text {P6UPR2B }}, \beta_{\text {P6LWR4B }}\right]=\left[-90^{\circ}, 90^{\circ},-90^{\circ}\right.$, 90°.
The individual joint angle rotation capabilities are 0° to 360° (continuous rotation).
The γ joint angles, $\gamma_{\text {stbd }}$ and $\gamma_{\text {port, }}$, are positive right handed rotations about the rotation axes pointed in the +x axis direction. The 0° position is defined as when the radiator beams lie in the $x-y$ plane. The individual joint angle rotation capabilities are 0° to $\pm 115^{\circ}$ (hardware limit), although the radiator commands are restricted to $\pm 105^{\circ}$ (software limit).
TRANSFORMATIONS: Therefore, the following transformations define the relationship between the generic analysis angles and the individual joint angles:
$\left[\begin{array}{c}\alpha_{\text {stbd }} \\ {\left[\alpha_{\text {port }}\right.}\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right] \alpha$
$\left[\begin{array}{l}\beta_{\text {S4UPR3A }} \\ \beta_{\text {S4LWRIA }} \\ \beta_{\text {S6UPRIB }} \\ \beta_{\text {SGLWR3B }} \\ \hline \beta_{\text {P4UPR4A }} \\ \beta_{\text {P4LWR2A }} \\ \beta_{\text {P6UPR2B }} \\ \beta_{\text {P6LWR4B }}\end{array}\right]=\left[\begin{array}{c}-\beta-90^{\circ} \\ \beta+90^{\circ} \\ -\beta-90^{\circ} \\ \beta+90^{\circ} \\ \hline \beta-90^{\circ} \\ -\beta+90^{\circ} \\ \beta-90^{\circ} \\ -\beta+90^{\circ}\end{array}\right]$

FIGURE 4.0-8 ALPHA, BETA, AND GAMMA ANGLE DEFINITIONS - Continued

FIGURE 4.0-9 SOYUZ TM TRANSPORT MANNED VEHICLE COORDINATE SYSTEM

NAME: Progress M Body Axis Coordinate System
TYPE: Right-Handed Cartesian, Body-Fixed
ORIGIN: The origin is located at the center of the aft bulkhead
ORIENTATION: $\quad \mathrm{X}_{\text {TCV }} \quad$ The X -axis is parallel to the longitudinal axis of the module. The positive X-axis is away from the docking cone.
$\mathrm{Y}_{\mathrm{TCV}}$ The positive Y -axis is perpendicular to $\mathrm{X}_{\mathrm{TCV}}$ and its projection passes through the nominal center of the docking antenna. The positive Y -axis is in the direction of the docking antenna.
$\mathrm{Z}_{\mathrm{TCV}} \quad$ The Z -axis completes the right-handed Cartesian system.
The Euler sequence that is associated with this system is a yaw, pitch, roll, sequence, where $\psi=$ yaw, $\theta=$ pitch, and $\phi=$ roll or blank. This attitude sequence is yaw, pitch, and roll around the $Z_{T C V}, Y_{T C V}$, and $\mathrm{X}_{\text {TCV }}$ axes, respectively.
$\mathrm{L}, \mathrm{M}, \mathrm{N}$: Moments about $X_{\mathrm{TCV}}, Y_{\mathrm{TCV}}$, and Z_{TCV} axes, respectively.
p, q, r: Body rates about $X_{\mathrm{TCV}}, Y_{\mathrm{TCV}}$, and Z_{TCV} axes, respectively.
p, q, rAngular body acceleration about $X_{\mathrm{TCV}}, Y_{\mathrm{TCV}}$, and Z_{TCV} axes, respectively.
SUBSCRIPT:
TCV

FIGURE 4.0-10 PROGRESS-M TRANSPORT CARGO VEHICLE COORDINATE SYSTEM

NAME: Crew Return Vehicle Coordinate System
TYPE: Right-Handed Cartesian, Body-Fixed
ORIGIN: The origin is located 6 " in front of the vehicle nose and flush with the exterior floor.

ORIENTATION: $\quad X_{\text {CRV }}$ The X-axis is parallel to the longitudinal axis of the vehicle. The positive X-axis is in the rearward direction.
$Z_{\text {CRV }} \quad$ The Z-axis is the direction of the CBM.
$Y_{C R V}$ The positive Y -axis completes the right handed coordinate frame. The Euler sequence that is associated with this system is a yaw, pitch, roll, sequence, where $\psi=$ yaw, $\theta=$ pitch, and $\phi=$ roll or blank. This attitude sequence is yaw, pitch, and roll around the $Z_{C R V}, Y_{C R V}$, and $\mathrm{X}_{\text {CRV }}$ axes, respectively.
$\mathrm{L}, \mathrm{M}, \mathrm{N}$: Moments about $X_{C R V}, Y_{\text {CRV, }}$ and $Z_{\text {CRV }}$ axes, respectively.
p, q, r: Body rates about $X_{\mathrm{CRV}}, Y_{\mathrm{CRV}}$, and Z_{CRV} axes, respectively. p, q, r: Angular body acceleration about $X_{\mathrm{CRV}}, Y_{\mathrm{CRV}}$, and Z_{CRV} axes, respectively.
SUBSCRIPT:
CRV

FIGURE 4.0-11 CREW RETURN VEHICLE COORDINATE SYSTEM

ENGINE CLUSTER (EC) 1
I Yav

NAME:	Automated Transfer Vehicle
TYPE:	Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located 100 inches in front of and at the center of the docking mechanism interface.
ORIENTATION:	$X_{\text {ATV }}$ The X-axis correspnds to the ATV longitudanal axis, with a posative direction from the ATV Spacecraft toward the ATV Cargo Module.
	$Y_{\text {ATV }}$ The Y-axis is perpendicular to $X_{\text {ATV }}$, with a positive toward the ATV
engine cluster 1.	

FIGURE 4.0-12 AUTOMATED TRANSFER VEHICLE COORDINATE SYSTEM

FIGURE 4.0-13 H-II TRANSFER VEHICLE COORDINATE SYSTEM, MECHANICAL DESIGN REFERENCE

NAME: H-II Transfer Vehicle Coordinate System, Attitude Reference
TYPE:
Right-Handed Cartesian, Body-Fixed
ORIGIN: The HTV Center of Mass with respect to the HTV Mechanical Design Reference Coordinate System

ORIENTATION: $\quad \mathrm{X}_{\text {HTVB }}$ The X -axis is parallel to the longitudinal axis of the module cluster. The positive X -axis is toward the CBM interface.
$\mathrm{Z}_{\text {HTVB }}$ The Z -axis is perpendicular to $\mathrm{X}_{\text {HTVB }}$ and parallel to the centerline of field of view of Rendezvous Sensor. The negative Z-axis is in the direction of the Rendezvous Sensor head side as shown.
$\mathrm{Y}_{\text {HTVB }}$ The Y -axis completes the right-handed orthogonal system.
The Euler sequence that is associated with this system is a yaw, pitch, roll, sequence, where $\psi=$ yaw, $\theta=$ pitch, and $\phi=$ roll or bank. This attitude sequence is yaw, pitch, and roll around the $Z_{\text {HTVB }}$, $\mathrm{Y}_{\text {HTVB }}$, and $X_{\text {HTVB }}$ axes, respectively.

SUBSCRIPT: HTVB

FIGURE 4.0-14 H-II TRANSFER VEHICLE COORDINATE SYSTEM, ATTITUDE REFERENCE

5.0 ARTICULATING AND TRANSVERSE BOOM REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the articular subelements and transverse boom elements. In addition, the Starboard and Port Solar Power Module elements are defined using the individual subelement definitions as its basis. All dimensions are in inches unless otherwise noted. All drawings include an isometric view, top view, front view and side view moving left to right, top to bottom.

FIGURE 5.0-1 STARBOARD SOLAR POWER MODULE COORDINATE SYSTEM

FIGURE 5.0-2 INTEGRATED TRUSS SEGMENT S4 COORDINATE SYSTEM

NAME:	Integrated Truss Segment S5 Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed ORIGIN: The origin is located along the structure centerline, 100 inches forward of the primary trunnions, at the elevation of the longitudinal trunnions.
ORIENTATION:	$X_{S 5} \quad$ The X-axis is perpendicular to the line formed by connecting the bases of the primary port and starboard trunnions. It runs parallel to the longitudinal extension of S5, through the geometrical center of the bulkhead.
$Y_{S 5}$ The Y-axis is the line formed by connecting the primary port and starboard trunnions, centered at the geometrical center of the bulkhead.	
The positive Y-axis is starboard.	
$Z_{S 5}$ The positive Z-axis is perpendicular to the $X_{S 5} / Y_{S 5}$ plane, and completes the right-handed Cartesian system. S5	

FIGURE 5.0-3 INTEGRATED TRUSS SEGMENT S5 COORDINATE SYSTEM

$$
\begin{array}{ll}
\text { NAME: } & \begin{array}{l}
\text { Integrated Truss Segment S6 Coordinate System } \\
\text { TYPE: } \\
\text { Right-Handed Cartesian, Body-Fixed }
\end{array} \\
\text { ORIGIN: } & \begin{array}{l}
\text { The origin is located along the } Y_{\text {S6 }} \text {-axis at a point } \\
\text { S6/S5 interface plane. The S6/S5 interface plane } \\
\text { outermost face of the S6 inboard batten, corner joi }
\end{array} \\
\text { ORIENTATION: } & \begin{array}{l}
\text { YS6 The Y-axis is nominally coincident with the } \\
\text { rotation. It is defined as perpendicular to } Z_{S 6}, \text { para } \\
\text { longitudinal extension of S6, and passing through } \\
\text { connection the centers of the bases of the two inb } \\
\text { positive Y-axis is in the starboard (outboard) direc }
\end{array} \\
& \begin{array}{l}
\text { Z The Z-axis is parallel to the line connectin } \\
\text { of the two inboard trunnions. The positive Z-axis } \\
\text { when alpha is equal to zero degrees. }
\end{array} \\
& \begin{array}{l}
X_{\text {S6 }} \text { The positive } X \text {-axis is in the ram direction } \\
\text { zero degrees and completes the right-handed Car }
\end{array} \\
\text { SUBSCRIPT: } & \begin{array}{l}
\text { S6 }
\end{array}
\end{array}
$$

FIGURE 5.0-4 INTEGRATED TRUSS SEGMENT S6 COORDINATE SYSTEM

FIGURE 5.0-5 PORT SOLAR POWER MODULE COORDINATE SYSTEM

NAME:	Integrated Truss Segment P4 Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located along the $Y_{P 4}$-axis at a point 100 inches inboard of the P4/P3 interface plane. The P4/P3 interface plane is defined as the outboard face of the outboard Alpha Joint Bulkhead. NOTE: For P3/P4 coordinate frame use the P3 frame.
ORIENTATION:	$Y_{P 4}$ The Y-axis is coincident with the nominal alpha joint axis of rotation, which is defined as perpendicular to the P4/P3 interface plane and located at the center of the Alpha Joint Bulkhead. The positive Y-axis is in the starboard (inboard) direction.
	$Z_{P 4} \quad$ The Z-axis is perpendicular to $Y_{P 4}$ and parallel to the nominal longitudinal centerline of the integrated equipment assembly radiators, when deployed. The positive Z-axis is in the nadir direction when alpha is equal to zero degrees.
	$\mathrm{X}_{\mathrm{P} 4} \quad$ The positive X -axis is in the ram direction when alpha is equal to zero degrees and completes the right-handed Cartesian system.
SUBSCRIPT:	P4

FIGURE 5.0-6 INTEGRATED TRUSS SEGMENT P4 COORDINATE SYSTEM

NAME: Integrated Truss Segment P5 Coordinate System
TYPE: Right-Handed Cartesian, Body-Fixed
ORIGIN: The origin is located along the structure centerline, 100 inches forward of the primary trunnions, at the elevation of the longitudinal trunnions.

ORIENTATION: $\quad X_{P 5}$ The X -axis is perpendicular to the line formed by connecting the bases of the primary port and starboard trunnions. It runs parallel to the longitudinal extension of P5, through the geometrical center of the bulkhead.
$\mathrm{Y}_{\mathrm{P} 5} \quad$ The Y -axis is the line formed by connecting the primary port and starboard trunnions, centered at the geometrical center of the bulkhead. The positive Y -axis is starboard.
$Z_{P 5} \quad$ The positive Z-axis is perpendicular to the $X_{P 5} / Y_{P 5}$ plane, and completes the right-handed Cartesian system.
SUBSCRIPT:

FIGURE 5.0-8 INTEGRATED TRUSS SEGMENT P6 COORDINATE SYSTEM

FIGURE 5.0-9 SOLAR ARRAY WING COORDINATE SYSTEM

FIGURE 5.0-10 THERMAL CONTROL SYSTEM RADIATOR COORDINATE SYSTEM

FIGURE 5.0-11 INTEGRATED TRUSS SEGMENT Z1 COORDINATE SYSTEM

FIGURE 5.0-12 INTEGRATED TRUSS SEGMENT SO COORDINATE SYSTEM

NAME:	Integrated Truss Segment S1 Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located at a point 100 inches from the outer face of the S1 ITS bulkhead that interfaces with the SO ITS. The YZ plane nominally contains the centerline of all four trunnion pins. The origin is defined as the point 200.53 inches toward port along the Y-axis measured from the line connecting the centers of the base of trunnion pins T2 and T3.
ORIENTATION:	$\mathrm{X}_{\mathrm{S} 1}$ The X -axis is parallel to the vector cross-product of the Y -axis with the line from the center of the base of trunnion pin T2 to the center of the base of trunnion pin T3, and is positive forward.
	$\mathrm{Y}_{\mathrm{S} 1} \quad$ The Y -axis is parallel with the line from the center of the base of trunnion pin T2 to the center of the base of trunnion pin T1, and passes through the midpoint of the line connection the centers of the bases of trunnion pins T2 and T3. The positive Y -axis is toward starboard.
	$\mathrm{Z}_{\text {S1 }} \quad$ The Z -axis completes the right-handed Cartesian system.
SUBSCRIPT:	S1

FIGURE 5.0-13 INTEGRATED TRUSS SEGMENT S1 COORDINATE SYSTEM

FIGURE 5.0-14 INTEGRATED TRUSS SEGMENT S3 COORDINATE SYSTEM

NAME:	Integrated Truss Segment P1 Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located at a point 100 inches from the outer face of the P1 ITS bulkhead that interfaces with the SO ITS. The YZ plane nominally contains the centerline of all four trunnion pins. The origin is defined as the point
200.53 inches toward port along the Y-axis measured from the line	
connecting the centers of the base of trunnion pins T2 and T3.	

FIGURE 5.0-15 INTEGRATED TRUSS SEGMENT P1 COORDINATE SYSTEM

FIGURE 5.0-16 INTEGRATED TRUSS SEGMENT P3 COORDINATE SYSTEM

FIGURE 5.0-17 FGB ARRAYS COORDINATE SYSTEM

FIGURE 5.0-18 SERVICE MODULE ARRAYS COORDINATE SYSTEM

IV
III

NAME:	Solar Power Platform (SPP) Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located at the center of the SPP/SM bulkhead interface.
ORIENTATION:	XSPP The X-axis is parallel to the line from the center of the base trunnion pin T3 to the center of the base trunnion pin T2, and is positive as shown.
	YSPP The Y-axis is completes the right-handed Cartesian system. ZSPP The Z-axis is parallel to the vector cross-product of the lines between two pairs of trunnions: from the center of the base of trunnion pin T2 to the center of the base of trunnion T1, and from the center of the base of trunnion pin T2 to the center of the base of trunnion pin T3, and is positive as shown.
SUBSCRIPT:	SPP

FIGURE 5.0-19 SCIENCE POWER PLATFORM COORDINATE SYSTEM

NAME:	SPP Radiator Coordinate System TYPE:
DESCRIPTION:	Right-Handed Cartesian, Body-Fixed This coordinate system is defined using the mechanical constraints of the SPP Radiator Rotary Joint as well as the Space Station LVLH flight orientation.
ORIGIN:	The origin is located along the X-axis at a point 100 inches forward of the SPP thermal radiator rotational joint Y-Z interface plane. This interface plane is defined as the attach surface of the Torque Box assembly (shown above) to the SPP core (not shown).
ORIENTATION:	XSPRR The X-axis is coincident with the joint axis of rotation. The positive X-axis is away from the radiator.
	YSPPR The Y-axis is normal to the nominal plane of the deployed radiator plane. The Y-axis is in the starboard/rearward direction when the rotation angle is equal to zero.
ZUBSCRIPT:	ZSPR The positive Z-axis completes the right-handed Cartesian system. SPPR

FIGURE 5.0-20 SCIENCE POWER PLATFORM RADIATOR COORDINATE SYSTEM

NAME:
TYPE:
ORIGIN:

ORIENTATION:

FIGURE 5.0-21 SCIENCE POWER PLATFORM ARRAYS COORDINATE SYSTEM

6.0 VIEWING REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the viewing subelements.

FIGURE 6.0-1 TRACKING AND DATA RELAY SATELLITE SYSTEM (KU-BAND) COORDINATE SYSTEM

TBD

NAME:	Attached Payload Ram Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes $\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}$, and Z_{A}.
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	$X_{\text {APR }}$ The X-axis is parallel to the Space Station X_{A}-axis and positive in the direction of flight when attached to the Space Station.
	$Y_{\text {APR }}$ The Y -axis is parallel to the Space Station Y_{A}-axis and positive toward starboard when attached to the Space Station.
	$Z_{\text {APR }} \quad$ The Z-axis is parallel to the Space Station Z_{A}-axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APR

FIGURE 6.0-2 ATTACHED PAYLOAD RAM COORDINATE SYSTEM

TBD

NAME:	Attached Payload Wake Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes $\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}$, and Z_{A}.
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	$\mathrm{X}_{\text {APW }}$ The X -axis is parallel to the Space Station X_{A}-axis and positive in the direction of flight when attached to the Space Station.
	$\mathrm{Y}_{\text {APW }}$ The Y -axis is parallel to the Space Station Y_{A}-axis and positive toward starboard when attached to the Space Station.
	$\mathrm{Z}_{\text {APW }} \quad$ The Z -axis is parallel to the Space Station Z_{A}-axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APW

FIGURE 6.0-3 ATTACHED PAYLOAD WAKE COORDINATE SYSTEM

TBD

NAME:	Attached Payload Zenith Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes $\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}$, and Z_{A}.
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	$X_{\text {APZ }}$ The X -axis is parallel to the Space Station X_{A}-axis and positive in the direction of flight when attached to the Space Station.
	$Y_{A P Z}$ The Y-axis is parallel to the Space Station Y_{A}-axis and positive toward starboard when attached to the Space Station.
	$Z_{\text {APZ }} \quad$ The Z-axis is parallel to the Space Station Z_{A}-axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APZ

FIGURE 6.0-4 ATTACHED PAYLOAD ZENITH COORDINATE SYSTEM

TBD

NAME:	Attached Payload Nadir Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The Attached Payload will be attached to the Space Station so that the coordinate axes are nominally parallel to and the same sense as the Space Station Analysis Coordinate Frame axes $\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}$, and Z_{A}.
ORIGIN:	The origin is located along the plane of symmetry at a point 100 inches inward (toward the ITS) from the interface plane with the Space Station. This interface plane is defined as the outermost face of the attach structure used to attach the payload to the ITA.
ORIENTATION:	$X_{\text {APN }}$ The X -axis is parallel to the Space Station X_{A}-axis and positive in the direction of flight when attached to the Space Station.
	$Y_{\text {APN }}$ The Y-axis is parallel to the Space Station Y_{A}-axis and positive toward starboard when attached to the Space Station.
	$Z_{\text {APN }} \quad$ The Z-axis is parallel to the Space Station Z_{A}-axis and positive toward nadir when attached to the Space Station.
SUBSCRIPT:	APN

FIGURE 6.0-5 ATTACHED PAYLOAD NADIR COORDINATE SYSTEM

FIGURE 6.0-6 EARLY AMMONIA SERVICER COORDINATE STSTEM

NAME:	Rack Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located at the interface of the center line bushing attachment to the rear side of the rack.
ORIENTATION:	X $_{\text {RACK }}$ The X-axis is parallel to a line through the center line bushing attachments, perpendicular to the side wall.
	Y RACK The Y-axis is perpendicular to the X-axis, parallel to the plane of the rack floor, and is positive to the aft of the rack rear side.
	$Z_{\text {RACK }}$ The Z-axis completes the right-handed Cartesian system.
SUBSCRIPT:	RACK

FIGURE 6.0-8 O2/N2 HIGH PRESSURE GAS TANK COORDINATE SYSTEM

TBD

NAME:	Solar Array ORU Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
ORIGIN:	TBD
ORIENTATION:	XSAO TBD
	YSAO TBD
	Z SAO TBD
SUBSCRIPT:	SAO

FIGURE 6.0-9 SOLAR ARRAY ORU COORDINATE SYSTEM

TBD

NAME:	Pump Module Assembly ORU Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
ORIGIN:	TBD
ORIENTATION:	XPMAO TBD
	YPMAO TBD
	ZPMAO TBD $^{\text {SUBSCRIPT: }}$
	PMAO

TBD

NAME:	S1 Grapple Bar ORU Coordinate System	
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed	
ORIGIN:	TBD	
ORIENTATION:	X $_{\text {S1-GBO }}$	
	Y Si-GBO	TBD
	Z SB1-GBO	TBD
SUBSCRIPT:	S1-GBO	

TBD

NAME:	Radiator ORU Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
ORIGIN:	TBD
ORIENTATION:	X RORU TBD
	Y RORU TBD
	$Z_{\text {RORU TBD }}$
SUBSCRIPT:	RORU

FIGURE 6.0-12 RADIATOR ORU COORDINATE SYSTEM

TBD

NAME:	Thermal Radiator Rotary Joint (TRRJ) ORU Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
ORIGIN:	TBD
ORIENTATION:	X $_{\text {TRRJO }}$ TBD
	Y $_{\text {TRRJO }}$ TBD
	Z TRRJO $^{\text {TBD }}$
SUBSCRIPT:	TRRJO

FIGURE 6.0-13 THERMAL RADIATOR ROTARY JOINT ORU COORDINATE SYSTEM

TBD

NAME:	Mast Canister ORU Coordinate System
TYPE:	Rotating Right-Handed Cartesian, Body-Fixed
ORIGIN:	TBD
ORIENTATION:	X $_{\text {MCO }}$ TBD
	Y MCO TBD
	Z MCO $^{\text {MBD }}$
SUBSCRIPT:	MCO

FIGURE 6.0-14 MAST CANISTER ORU COORDINATE SYSTEM

7.0 UNPRESSURIZED LOGISTICS REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the unpressurized logistics subelements.

FIGURE 7.0-1 SPACELAB PALLET COORDINATE SYSTEM

TBD

FIGURE 7.0-2 EDO COORDINATE SYSTEM

FIGURE 7.0-3 EXTERNAL STOWAGE PLATFORM - 2

8.0 TRANSLATING REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the translating subelements. This includes the Mobile Transporter as well as the individual subelements from which the Mobile Servicing Center (MSC) is comprised. All dimensions are in inches unless otherwise noted. All drawings include an isometric view, top view, front view and side view moving left to right, top to bottom.

NAME:	Crew and Equipment Translational Aid Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
ORIGIN:	The origin is located at a point 100 inches along X from the base plate forward face.
ORIENTATION:	XCETA The X-axis is perpendicular to the geometric plane of symmetry of the four attach points to the ITS, and is located horizontally in the geometric center of the baseplate. The positive X-axis is toward forward as shown.
	YCETA The Y-axis is perpendicular to the longitudinal axis of the CETA base plate, as shown.
SUBSCRIPT:	ZCETA The Z-axis completes the right-handed Cartesian system. CETA

FIGURE 8.0-1 CREW AND EQUIPMENT TRANSLATIONAL AID COORDINATE SYSTEM

TBD

NAME:	Mobile Servicing Centre Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The Mobile Servicing Centre (MSC) is part of the MSS and consists of the MT, the MRS Base System (MBS), and the Space Station Remote Manipulator System (SSRMS) .
ORIGIN:	The origin is located on a line running through the geometric center of the MT, perpendicular to the interface plane between the MT and the MBS, at a point 100 inches from the interface plane. The interface plane is defined as the outer face of the MT structure to which the MBS attaches.
ORIENTATION:	$X_{\text {MSC }}$ The X -axis is perpendicular to the interface plane between the MT and the MBS. The positive X-axis is toward the MSC.
	$Y_{\text {MSC }}$ The Y-axis is parallel to and positive in the same direction as the Space Station Y-axis when the MSC is in the nominal orientation.
	$\mathrm{Z}_{\text {MSC }}$ The Z-axis completes the right-handed Cartesian system.
SUBSCRIPT:	MSC

FIGURE 8.0-2 MOBILE SERVICING CENTRE COORDINATE SYSTEM

NAME:	Mobile Transporter Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed
DESCRIPTION:	The MT is part of the MSC.
ORIGIN:	The origin is located on a line running through the geometric center of the MT, perpendicular to the interface plane between the MT and the MBS, at a point 95.79 inches from the interface plane. The geometric center of the MT is located along a line equidistant from the four MT to MBS cup and cone centerlines as shown in SSP 42003, Part 2, Rev. A, Figure A3.2-3 "MBS to MT Mechanical Interface." The interface plane is defined as the common datum plane for the cups and cones, respectively, by which the MT and the MBS structures are joined. This interface plane is shown in SSP 42003, Part 2, Rev A, Figure A3.2-6 "MBS to MT Mechanical Interface," as being 29.41 inches from the datum A (the top rail surface of the Integrated Truss Segments) when the MT is in the latched condition. Thus, for the launch condition, the origin is also located on the axis of the integrated truss SO .
ORIENTATION:	$X_{\text {MT }} \quad$ The X -axis is perpendicular to the interface plane between the MT and the MBS. The positive X-axis is toward the MT.
	$Y_{M T} \quad$ The Y-axis is parallel to and positive in the same direction as the Space Station Y -axis when the MT is located on the Space Station.
	$\mathrm{Z}_{\mathrm{MT}} \quad$ The Z -axis completes the right-handed Cartesian system.
SUBSCRIPT:	MT

FIGURE 8.0-3 MOBILE TRANSPORTER COORDINATE SYSTEM

FIGURE 8.0-4 MOBILE SERVICING CENTRE BASE SYSTEM COORDINATE SYSTEM

NAME:	OTCM Operating Coordinate System
TYPE:	Right-Handed Cartesian system
DESCRIPTION:	The OTCM Operating Coordinate System
ORIGIN:	The origin is located at the geometric center of the gripper jaw ORIENTATION: XOTCM The X-axis is along the wrist roll axis of the tool change out mechanism, with positive direction along the camera line-of-sight. YOTCM The Y-axis is oriented as positive right as seen through the tool change-out mechanism camera.
SUBSCRIPT:	ZOTCM The positive Z-axis completes the right-handed Cartesian system. OTCM

FIGURE 8.0-5 OTCM OPERATING COORDINATE SYSTEM

DELETED

FIGURE 8.0-6 DELETED

$$
8-7
$$

FIGURE 8.0-7 END EFFECTOR (EE) OPERATING COORDINATE SYSTEM

FIGURE 8.0-8 JEM - REMOTE MANIPULATOR SYSTEM COORDINATE SYSTEM

9.0 PRESSURIZED MODULE REFERENCE FRAMES

The coordinate systems outlined in this chapter represent all the pressurized module subelements. All dimensions are in inches unless otherwise specified. All drawings include an isometric view, top view, front view and side view moving left to right, top to bottom. The descriptive terms nadir, zenith, aft, forward, port, and starboard, when used, are the directions or faces of the module as nominally mated to the ISS.

FIGURE 9.0-1 UNITED STATES LABORATORY MODULE COORDINATE SYSTEM

FIGURE 9.0-2 UNITED STATES HABITATION MODULE COORDINATE SYSTEM

FIGURE 9.0-3 MINI PRESSURIZED LOGISTICS MODULE COORDINATE SYSTEM

FIGURE 9.0-4 JOINT AIRLOCK COORDINATE SYSTEM

FIGURE 9.0-5 CUPOLA COORDINATE SYSTEM

FIGURE 9.0-6 RESOURCE NODE 1 COORDINATE SYSTEM

FIGURE 9.0-7 RESOURCE NODE 2 COORDINATE SYSTEM

FIGURE 9.0-8 RESOURCE NODE 3 COORDINATE SYSTEM

NAME: Centrifuge Accommodation Module Coordinate System
TYPE: Rotating Right-Handed Cartesian, Body-Fixed to the Pressurized Module
ORIGIN: The origin is located on the interface plane between the CAM structure and the passive common berthing mechanism (PCBM) and at the geometric center of the array of CBM mating bolts as shown.

ORIENTATION: $\quad \mathrm{X}_{\text {CAM }}$ The X -axis is perpendicular to the nominal CBM interface plane and pierces the geometric center of the array of CBM mating bolts. The positive X -axis is toward the pressurized module from the origin.
$Z_{\text {CAM }} \quad$ A vector, which points perpendicularly from the X axis to the base of the keel pin, defines the negative Z direction. The Z axis points from the origin to the opposite direction of the vector defined above.
$\mathrm{Y}_{\text {CAM }}$ The Y -axis completes the right-handed Cartesian system.
SUBSCRIPT:
CAM
FIGURE 9.0-9 CENTRIFUGE ACCOMMODATION MODULE COORDINATE SYSTEM

NAME: Japanese Experiment Module (JEM) - Pressurized Module (PM) Coordinate System

TYPE: Right-Handed Cartesian, Body-Fixed to the Pressurized Module
ORIGIN: The origin is located on a plane 13.4 inches (341.6 mm) from the Common Berthing Mechanism (CBM) mating plane toward positive $\mathrm{X}_{\text {JEM }}$ through the geometric center of the array of CBM mating bolts as shown.
ORIENTATION: $\quad X_{J E M}$ The X -axis is perpendicular to the nominal CBM interface plane and positive toward the opposite end of the pressurized module as shown.
$Z_{\text {JEM }} \quad$ The Z-axis is parallel to the perpendicular line from the X-axis the center of the base of the keel pin, and positive in the opposite direction as shown.
$\mathrm{Y}_{\text {JEM }}$ The Y -axis completes the right-handed Cartesian system.
SUBSCRIPT: JEM

FIGURE 9.0-10 JAPANESE EXPERIMENT MODULE (JEM) — PRESSURIZED MODULE (PM) COORDINATE SYSTEM

FIGURE 9.0-11 JAPANESE EXPERIMENT MODULE EXPERIMENTAL LOGISTICS MODULE PRESSURIZED SECTION COORDINATE SYSTEM

FIGURE 9.0-12 JAPANESE EXPERIMENT MODULE - EXPERIMENTAL LOGISTICS MODULE EXPOSED SECTION COORDINATE SYSTEM

FIGURE 9.0-13 JAPANESE EXPERIMENT MODULE EXPOSED FACILITY COORDINATE SYSTEM

FIGURE 9.0-14 ESA ATTACHED PRESSURIZED MODULE COORDINATE SYSTEM

FIGURE 9.0-15 PRESSURIZED MATING ADAPTER-1 COORDINATE SYSTEM

NAME:	Pressurized Mating Adapter - 2 Coordinate System
TYPE:	Right-Handed Cartesian, Body-Fixed to the Pressurized Module
ORIGIN:	The origin is located at the geometric center of the of the array of mating bolts on the interface plane of the PMA2 CBM.
ORIENTATION:	XPMA2 The X-axis is parallel to the perpendicular line from the Z-axis to the point midway between the centers of the zenith alignment hole and the zenith alignment pin.- The positive X-axis is toward the zenith.
ZPMA2 The Z-axis is perpendicular to the nominal CBM interface plane and positive out of the module as shown. YPMA2 The Y-axis completes the right-handed Cartesian system.	
SUBSCRIPT:	PMA2

FIGURE 9.0-16 PRESSURIZED MATING ADAPTER-2 COORDINATE SYSTEM

FIGURE 9.0-17 PRESSURIZED MATING ADAPTER-3 COORDINATE SYSTEM

FIGURE 9.0-18 FGB CARGO BLOC COORDINATE SYSTEM

FIGURE 9.0-19 SERVICE MODULE (SM) COORDINATE SYSTEM

FIGURE 9.0-20 DOCKING COMPARTMENT - 1 COORDINATE SYSTEM

FIGURE 9.0-21 DOCKING COMPARTMENT - 2 COORDINATE SYSTEM

FIGURE 9.0-22 DELETED

FIGURE 9.0-23 DELETED

FIGURE 9.0-24 UNIVERSAL DOCKING MODULE COORDINATE SYSTEM

FIGURE 9.0-25 DELETED

FIGURE 9.0-26 DELETED

FIGURE 9.0-27 RESEARCH MODULE -1 COORDINATE SYSTEM

FIGURE 9.0-28 RESEARCH MODULE -2 COORDINATE SYSTEM

APPENDIX A ABBREVIATIONS AND ACRONYMS

CBM	Common Berthing Mechanism
CETA	Crew and Equipment Translational Aid
CIO	Conventional International Origin
CSA	Canadian Space Agency
CTRS	Conventional Terrestrial Reference System
EF	Exposed Facility
ELM	Experimental Logistics Module
ESA	European Space Agency
GTOD	Greenwich True of Date
ITA	Integrated Truss Assembly
ITS	Integrated Truss Segment
JEM	Japanese Experiment Module
JPDRD	Joint Program Definition and Requirements Document
LVLH	Local Vertical Local Horizontal
MBS	MRS Base System
MMD	Mobile Servicing System Maintenance Depot
MSC	Mobile Servicing Centre
MSS	Mobile Servicing System
MT	Mobile Transporter
NASA	National Aeronautics and Space Administration
NASDA	National Space Development Agency of Japan
PBM	Pressurized Berthing Module
PDGF	Power Data Grapple Fixture
PWP	Personnel Work Platform
SPDM	Special Purpose Dexterous Manipulator

SSPP	Space Station Program Participants
SSRMS	Space Station Remote Manipulator System
TCS	Thermal Control System
TDRSS	Tracking and Data Relay Satellite System
TOD	True of Date
TRRJ	Thermal Radiator Rotary Joint
UBA	Unpressurized Berthing Adapter
UCL	Unpressurized Logistics Carrier

APPENDIX B GLOSSARY

CARTESIAN SYSTEM

A system whose reference frame consists of a triad of mutually perpendicular directed lines originating from a common point in which a vector is expressed by components that are scalar magnitude projections along each axis.

DATUM POINT

The common reference location for all configuration dependent coordinate systems.

GEODETIC LOCAL VERTICAL

A reference ellipsoid of revolution that approximates the figure of the Earth is presumed. Then, the local vertical at any point is along the unique line that is normal to the ellipsoid surface and that contains the point of interest.

INERTIAL COORDINATE SYSTEM

A system whose coordinate axes are fixed, relative to the stars, at infinite distances. That is, the rotation rates about all axes, relative to the stars, are zero.

MEAN VERSUS TRUE SYSTEMS

The line of intersection of the ecliptic plane (the instantaneous plane of motion of the Earth and sun) and the celestial equatorial plane (mean Earth equator) precesses among the fixed stars with a rate of one revolution in 26,000 years. Additionally, the Earth wobbles slightly on its axis, relative to its mean position, with periods of oscillations of only a few years. The former phenomenon is called precession; the latter is called nutation. A mean-of-date system is based on the intersection of the mean equator and the plane of the ecliptic; whereas, a true-of-date system is based on the intersection of the true Earth equator and the plane of the ecliptic.

NONROTATING SYSTEMS

An inertial or quasi-inertial system. That is, any system whose rates of rotation about all axes, relative to any inertial system, are zero.

OSCULATING CONIC

A two-body approximation to non-two-body motion that is derived from conditions existing at some instant of time but that is exact only for that instant. An osculating-conic trajectory is one that is tangent to the true trajectory at the defining instant.

PERIGEE AND APOGEE

The unique points in an elliptic orbit about the Earth wherein the object achieves minimum and maximum distance, respectively, from the center of the Earth.

QUASI-INTERNAL SYSTEM

A system in which the coordinates rotate for position reference but are taken to be instantaneously fixed with respect to an inertial system for velocity reference.

ROTATING SYSTEMS

A reference frame that varies with time from an inertial system and whose rates of rotation about axes are included in transformations of velocity vectors to derive relative velocity.

SLANT RANGE

The minimum or straight-line distance between two points expressed in the same coordinate system.

SLANT RANGE-RATE

The rate of change of slant range.

APPENDIX C SUBSCRIPT DESIGNATIONS

J2000	Mean of 2000, Cartesian or Polar
M1950	Mean of 1950, Cartesian or Polar
TR	True of Date, Cartesian or Polar
GW	Greenwich True of Date, Cartesian or Polar
G	Geodetic Coordinate System
LO	Local Orbital
CTRS	Conventional Terrestrial Reference System
XPOP	XPOP Quasi-Inertial Coordinate System
OSC	Russian Orbital Coordinates System
RSO	Russian Orbital Sun Equilibrium Coordinates System
A	Analysis
R	Reference
SB	Space Station Body
RSA	RSA Analysis Coordinate System
GPS	GPS Antenna Coordinate System
O	Orbiter Coordinate System
BY	Orbiter Body Axis Coordinate System
TMV	Soyuz TM Transport Manned Vehicle Coordinate System
TCV	Progress-M Transport Cargo Vehicle Coordinate System
CRV	Crew Return Vehicle Coordinate System
SOY	Soyuz Body Axis Coordinate System
M	Progress M Body Axis Coordinate System
CTV	Crew Transfer Vehicle Coordinate System
ATV	Automated Transfer Vehicle Coordinate System
HTVS	H-II Transfer Vehicle Coordinate System, Mechanical

HTVB	H-II Transfer Vehicle Coordinate System, Attitude
SA	Starboard Solar Power/Solar Array
S4	Integrated Truss Segment S4
S5	Integrated Truss Segment S5
S6	Integrated Truss Segment S6
PA	Port Solar Power
P4	Integrated Truss Segment P4
P5	Integrated Truss Segment P5
P6	Integrated Truss Segment P6
SAW	Thelar Array Wing Coordinate System Control System
TCS	Integrated Truss Segment Z1
Z1	Integrated Truss Segment S0
S0	Integrated Truss Segment S1 Pressure Gas Tank ORU Coordinate System
S1	Integrated Truss Segment S3
RACK	Scierdinate System Ammonia Servicer
HPG	Science Power Platform Coordinate System Power Platform Radiator Coordinate System
P1	Integrated Truss Segment P3
P3	FGB Array Coordinate System
FGBA	SM Array Coordinate System
SMA	SPP

$$
\mathrm{C}-2
$$

SAO	Solar Array ORU Coordinate System
PMAO	Pump Module Assembly ORU Coordinate System
S1-GBO	S1 Grapple Bar ORU Coordinate System
RORU	Radiator ORU Coordinate System
TRRJO	Thermal Radiator Rotary Joint ORU Coordinate System
MCO	Mast Canister ORU Coordinate System
SLP	Spacelab Pallet Coordinate System
ESP-2	External Stowage Platform - 2
CETA	Crew and Equipment Translational Aid
MSC	Mobile Servicing Centre
MT	Mobile Transporter
MBS	Mobile Servicing Centre Base System
OTCM	OTCM Coordinate System
EE	End Effector Operating Coordinate System
JEMRMS	JEM Remote Manipulator System Coordinate System
LAB	U.S. Laboratory Module
HAB	U.S. Habitation Module
MPLM	Mini Pressurized Logistics Module
AL	Airlock
CUP	Cupola
N1	Resource Node 1
N2	Resource Node 2
N3	Resource Node 3
CAM	Centrifuge Accommodation Module Coordinate System
JEM	Japanese Experiment Module
ELM-PS	Experimental Logistics Module, Pressurized Section
	C-3

ELM-ES	Experimental Logistics Module, Exposed Section
EF	Exposed Facility
APM	ESA Attached Pressurized Module
PMA1	Pressurized Mating Adapter 1 Coordinate System
PMA2	Pressurized Mating Adapter 2 Coordinate System
PMA3	Pressurized Mating Adapter 3 Coordinate System
FGB	FGB Cargo Bloc Coordinate System
SM	Service Module Coordinate System
DC1	Docking Compartment 1 Coordinate System
DC2	Universal Docking Module Coordinate System
UDM	Research Module 1 Coordinate System
RM1	Research Module 2 Coordinate System
RM2	

APPENDIX D REFERENCE AND SOURCE DOCUMENTS

U.S. Naval Observatory Circular No. 163,
December 10, 1981
Reference
U.S. Naval Observatory

Reference
NSTS 07700, Vol. IV
Attachment 1, ICD-2-19001
Reference

The International Astronomical Union Resolutions on Astronomical Constants, Time Scales, and the Fundamental Reference Frame
Figure 3.0-1
International Earth Rotation Service Bulletin-A
Figure 3.0-12
Shuttle Orbiter/Cargo Standard Interfaces

Figure 4.0-5

APPENDIX E ISS RUSSIAN SEGMENT

E-2

Scheme of the relative pasitian of the station's and modules
caordinate systems an the 155 Russian segment
(the configuration before UDM arrival)

